Uses of Class
cc.mallet.types.InstanceList
-
Packages that use InstanceList Package Description cc.mallet.classify Classes for training and classifying instances.cc.mallet.classify.constraints.ge cc.mallet.classify.constraints.pr cc.mallet.classify.evaluate Classes for computing and displaying the quaility of a classification trial, including accuracy, precision, and confusion matrix.cc.mallet.cluster Unsupervised clustering ofInstance
objects within anInstanceList
.cc.mallet.cluster.iterator cc.mallet.cluster.util cc.mallet.extract Unimplemented.cc.mallet.fst Transducers, including Conditional Random Fields (CRFs).cc.mallet.fst.confidence cc.mallet.fst.semi_supervised cc.mallet.fst.semi_supervised.constraints cc.mallet.fst.semi_supervised.pr cc.mallet.fst.semi_supervised.pr.constraints cc.mallet.fst.semi_supervised.tui cc.mallet.pipe Classes for processing arbitrary data into instances.cc.mallet.pipe.iterator Classes that generate instances from different kinds of input or data structures.cc.mallet.regression cc.mallet.regression.tui cc.mallet.topics cc.mallet.types Fundamental MALLET types, including FeatureVector, Instance, Label etc.cc.mallet.util Miscellaneous utilities including command line processing, math functions, lexing, logging. -
-
Uses of InstanceList in cc.mallet.classify
Fields in cc.mallet.classify declared as InstanceList Modifier and Type Field Description protected InstanceList
MaxEntOptimizableByGE. trainingList
protected InstanceList
ClassifierTrainer. validationSet
Methods in cc.mallet.classify that return InstanceList Modifier and Type Method Description InstanceList
C45.Node. getInstances()
InstanceList
ClassifierTrainer. getValidationInstances()
Methods in cc.mallet.classify with parameters of type InstanceList Modifier and Type Method Description java.util.ArrayList<Classification>
Classifier. classify(InstanceList instances)
double
NaiveBayes. dataLogLikelihood(InstanceList ilist)
void
ClassifierAccuracyEvaluator. evaluateInstanceList(ClassifierTrainer trainer, InstanceList instances, java.lang.String description)
abstract void
ClassifierEvaluator. evaluateInstanceList(ClassifierTrainer trainer, InstanceList instances, java.lang.String description)
double
Classifier. getAccuracy(InstanceList ilist)
double
Classifier. getAverageRank(InstanceList ilist)
double
Classifier. getF1(InstanceList ilist, int index)
double
Classifier. getF1(InstanceList ilist, Labeling labeling)
double
Classifier. getF1(InstanceList ilist, java.lang.Object labelEntry)
static double[][]
FeatureConstraintUtil. getFeatureLabelCounts(InstanceList list, boolean useValues)
Optimizable.ByGradientValue
MCMaxEntTrainer. getMaximizableTrainer(InstanceList ilist)
Optimizable.ByGradientValue
RankMaxEntTrainer. getMaximizableTrainer(InstanceList ilist)
Optimizable.ByGradientValue
MaxEntGERangeTrainer. getOptimizable(InstanceList trainingList)
Optimizable.ByGradientValue
MaxEntGETrainer. getOptimizable(InstanceList trainingList)
MaxEntOptimizableByLabelLikelihood
MaxEntTrainer. getOptimizable(InstanceList trainingSet)
MaxEntOptimizableByLabelLikelihood
MaxEntTrainer. getOptimizable(InstanceList trainingSet, MaxEnt initialClassifier)
Optimizer
MaxEntL1Trainer. getOptimizer(InstanceList trainingSet)
Optimizer
MaxEntTrainer. getOptimizer(InstanceList trainingSet)
This method is called by the train method.double
Classifier. getPrecision(InstanceList ilist, int index)
double
Classifier. getPrecision(InstanceList ilist, Labeling labeling)
double
Classifier. getPrecision(InstanceList ilist, java.lang.Object labelEntry)
double
Classifier. getRecall(InstanceList ilist, int index)
double
Classifier. getRecall(InstanceList ilist, Labeling labeling)
double
Classifier. getRecall(InstanceList ilist, java.lang.Object labelEntry)
void
DecisionTree. induceFeatures(InstanceList ilist, boolean withFeatureShrinkage, boolean inducePerClassFeatures)
static java.util.HashMap<java.lang.Integer,java.util.ArrayList<java.lang.Integer>>
FeatureConstraintUtil. labelFeatures(InstanceList list, java.util.ArrayList<java.lang.Integer> features)
static java.util.HashMap<java.lang.Integer,java.util.ArrayList<java.lang.Integer>>
FeatureConstraintUtil. labelFeatures(InstanceList list, java.util.ArrayList<java.lang.Integer> features, boolean reject)
Label features using heuristic described in "Learning from Labeled Features using Generalized Expectation Criteria" Gregory Druck, Gideon Mann, Andrew McCallum.double
NaiveBayes. labelLogLikelihood(InstanceList ilist)
static java.util.HashMap<java.lang.Integer,double[]>
FeatureConstraintUtil. readConstraintsFromFile(java.lang.String filename, InstanceList data)
Reads feature constraints from a file, whether they are stored using Strings or indices.static java.util.HashMap<java.lang.Integer,double[]>
FeatureConstraintUtil. readConstraintsFromFileIndex(java.lang.String filename, InstanceList data)
Reads feature constraints stored using strings from a file.static java.util.HashMap<java.lang.Integer,double[]>
FeatureConstraintUtil. readConstraintsFromFileString(java.lang.String filename, InstanceList data)
Reads feature constraints stored using strings from a file.static java.util.HashMap<java.lang.Integer,double[][]>
FeatureConstraintUtil. readRangeConstraintsFromFile(java.lang.String filename, InstanceList data)
Reads range constraints stored using strings from a file.static java.util.ArrayList<java.lang.Integer>
FeatureConstraintUtil. selectFeaturesByInfoGain(InstanceList list, int numFeatures)
Select features with the highest information gain.static java.util.HashMap<java.lang.Integer,double[]>
FeatureConstraintUtil. setTargetsUsingData(InstanceList list, java.util.ArrayList<java.lang.Integer> features)
static java.util.HashMap<java.lang.Integer,double[]>
FeatureConstraintUtil. setTargetsUsingData(InstanceList list, java.util.ArrayList<java.lang.Integer> features, boolean normalize)
static java.util.HashMap<java.lang.Integer,double[]>
FeatureConstraintUtil. setTargetsUsingData(InstanceList list, java.util.ArrayList<java.lang.Integer> features, boolean useValues, boolean normalize)
Set target distributions using estimates from data.static java.util.HashMap<java.lang.Integer,double[]>
FeatureConstraintUtil. setTargetsUsingFeatureVoting(java.util.HashMap<java.lang.Integer,java.util.ArrayList<java.lang.Integer>> labeledFeatures, InstanceList trainingData)
Set target distributions using feature voting heuristic described in "Learning from Labeled Features using Generalized Expectation Criteria" Gregory Druck, Gideon Mann, Andrew McCallum.void
ClassifierTrainer. setValidationInstances(InstanceList validationSet)
AdaBoostM2
AdaBoostM2Trainer. train(InstanceList trainingList)
Boosting method that resamples instances using their weightsAdaBoost
AdaBoostTrainer. train(InstanceList trainingList)
Boosting method that resamples instances using their weightsBaggingClassifier
BaggingTrainer. train(InstanceList trainingList)
BalancedWinnow
BalancedWinnowTrainer. train(InstanceList trainingList)
Trains the classifier on the instance list, updating class weight vectors as appropriateC45
C45Trainer. train(InstanceList trainingList)
ClassifierEnsemble
ClassifierEnsembleTrainer. train(InstanceList trainingSet)
C
ClassifierTrainer.ByActiveLearning. train(InstanceList trainingAndUnlabeledSet, Labeler labeler, int numLabelRequests)
C
ClassifierTrainer.ByOptimization. train(InstanceList trainingSet, int numIterations)
abstract C
ClassifierTrainer. train(InstanceList trainingSet)
ConfidencePredictingClassifier
ConfidencePredictingClassifierTrainer. train(InstanceList trainList)
DecisionTree
DecisionTreeTrainer. train(InstanceList trainingList)
Classifier
FeatureSelectingClassifierTrainer. train(InstanceList trainingSet)
MaxEnt
MaxEntGERangeTrainer. train(InstanceList trainingList)
MaxEnt
MaxEntGERangeTrainer. train(InstanceList train, int maxIterations)
MaxEnt
MaxEntGETrainer. train(InstanceList trainingList)
MaxEnt
MaxEntGETrainer. train(InstanceList train, int maxIterations)
MaxEnt
MaxEntPRTrainer. train(InstanceList trainingSet)
MaxEnt
MaxEntPRTrainer. train(InstanceList trainingSet, int maxIterations)
MaxEnt
MaxEntPRTrainer. train(InstanceList data, int minIterations, int maxIterations)
MaxEnt
MaxEntTrainer. train(InstanceList trainingSet)
MaxEnt
MaxEntTrainer. train(InstanceList trainingSet, int numIterations)
MCMaxEnt
MCMaxEntTrainer. train(InstanceList trainingSet)
MostFrequentClassifier
MostFrequentClassAssignmentTrainer. train(InstanceList trainingSet)
Create a MostFrequent classifier from a set of training data.NaiveBayes
NaiveBayesEMTrainer. train(InstanceList trainingSet)
NaiveBayes
NaiveBayesTrainer. train(InstanceList trainingList)
Create a NaiveBayes classifier from a set of training data.RandomClassifier
RandomAssignmentTrainer. train(InstanceList trainingList)
Create a Random classifier from a set of training data.MaxEnt
RankMaxEntTrainer. train(InstanceList trainingSet)
Winnow
WinnowTrainer. train(InstanceList trainingList)
Trains winnow on the instance list, updatingweights
according to errorsC
ClassifierTrainer.ByIncrements. trainIncremental(InstanceList trainingInstancesToAdd)
NaiveBayes
NaiveBayesTrainer. trainIncremental(InstanceList trainingInstancesToAdd)
Constructors in cc.mallet.classify with parameters of type InstanceList Constructor Description ClassifierAccuracyEvaluator(InstanceList[] instances, java.lang.String[] descriptions)
ClassifierAccuracyEvaluator(InstanceList instanceList1, java.lang.String instanceListDescription1)
ClassifierAccuracyEvaluator(InstanceList instanceList1, java.lang.String instanceListDescription1, InstanceList instanceList2, java.lang.String instanceListDescription2)
ClassifierAccuracyEvaluator(InstanceList instanceList1, java.lang.String instanceListDescription1, InstanceList instanceList2, java.lang.String instanceListDescription2, InstanceList instanceList3, java.lang.String instanceListDescription3)
ClassifierEvaluator(InstanceList[] instanceLists, java.lang.String[] instanceListDescriptions)
ClassifierEvaluator(InstanceList instanceList1, java.lang.String instanceListDescription1)
ClassifierEvaluator(InstanceList instanceList1, java.lang.String instanceListDescription1, InstanceList instanceList2, java.lang.String instanceListDescription2)
ClassifierEvaluator(InstanceList instanceList1, java.lang.String instanceListDescription1, InstanceList instanceList2, java.lang.String instanceListDescription2, InstanceList instanceList3, java.lang.String instanceListDescription3)
ConfidencePredictingClassifierTrainer(ClassifierTrainer underlyingClassifierTrainer, InstanceList validationSet)
ConfidencePredictingClassifierTrainer(ClassifierTrainer underlyingClassifierTrainer, InstanceList validationSet, Pipe confidencePredictingPipe)
MaxEntOptimizableByGE(InstanceList trainingList, java.util.ArrayList<MaxEntGEConstraint> constraints, MaxEnt initClassifier)
MaxEntOptimizableByLabelDistribution(InstanceList trainingSet, MaxEnt initialClassifier)
MaxEntOptimizableByLabelLikelihood(InstanceList trainingSet, MaxEnt initialClassifier)
Node(InstanceList ilist, C45.Node parent, int minNumInsts)
Node(InstanceList ilist, C45.Node parent, int minNumInsts, int[] instIndices)
Node(InstanceList ilist, DecisionTree.Node parent, FeatureSelection fs)
PRAuxClassifierOptimizable(InstanceList trainingData, double[][] baseDistribution, PRAuxClassifier classifier)
Trial(Classifier c, InstanceList ilist)
-
Uses of InstanceList in cc.mallet.classify.constraints.ge
Methods in cc.mallet.classify.constraints.ge with parameters of type InstanceList Modifier and Type Method Description java.util.BitSet
MaxEntFLGEConstraints. preProcess(InstanceList data)
java.util.BitSet
MaxEntGEConstraint. preProcess(InstanceList data)
java.util.BitSet
MaxEntRangeL2FLGEConstraints. preProcess(InstanceList data)
-
Uses of InstanceList in cc.mallet.classify.constraints.pr
Methods in cc.mallet.classify.constraints.pr with parameters of type InstanceList Modifier and Type Method Description java.util.BitSet
MaxEntFLPRConstraints. preProcess(InstanceList data)
java.util.BitSet
MaxEntPRConstraint. preProcess(InstanceList data)
-
Uses of InstanceList in cc.mallet.classify.evaluate
Constructors in cc.mallet.classify.evaluate with parameters of type InstanceList Constructor Description AccuracyCoverage(Classifier C, InstanceList ilist, int numBuckets, java.lang.String title)
AccuracyCoverage(Classifier C, InstanceList ilist, java.lang.String title)
-
Uses of InstanceList in cc.mallet.cluster
Fields in cc.mallet.cluster declared as InstanceList Modifier and Type Field Description protected InstanceList
Clustering. instances
Methods in cc.mallet.cluster that return InstanceList Modifier and Type Method Description InstanceList
Clustering. getCluster(int label)
Return an list of instances with a particular label.InstanceList[]
Clustering. getClusters()
Returns an array of instance lists corresponding to clusters.InstanceList
Clustering. getInstances()
Methods in cc.mallet.cluster with parameters of type InstanceList Modifier and Type Method Description abstract Clustering
Clusterer. cluster(InstanceList trainingSet)
Return a clustering of an InstanceListClustering
HillClimbingClusterer. cluster(InstanceList instances)
While not converged, callsimproveClustering
to modify the current predictedClustering
.Clustering
HillClimbingClusterer. cluster(InstanceList instances, int iterations, Clustering initialClustering)
While not converged, callimproveClustering
to modify the current predictedClustering
.Clustering
KMeans. cluster(InstanceList instances)
Cluster instancesClustering[]
HillClimbingClusterer. clusterKBest(InstanceList instances, int k)
Clustering[]
HillClimbingClusterer. clusterKBest(InstanceList instances, int iterations, Clustering initialClustering, int k)
Return the K most recent solutions.abstract Clustering[]
KBestClusterer. clusterKBest(InstanceList trainingSet, int k)
Clustering
GreedyAgglomerative. initializeClustering(InstanceList instances)
abstract Clustering
HillClimbingClusterer. initializeClustering(InstanceList instances)
Constructors in cc.mallet.cluster with parameters of type InstanceList Constructor Description Clustering(InstanceList instances, int numLabels, int[] labels)
Clustering constructor. -
Uses of InstanceList in cc.mallet.cluster.iterator
Fields in cc.mallet.cluster.iterator declared as InstanceList Modifier and Type Field Description protected InstanceList
PairSampleIterator. instances
-
Uses of InstanceList in cc.mallet.cluster.util
Methods in cc.mallet.cluster.util that return InstanceList Modifier and Type Method Description static InstanceList
ClusterUtils. combineLists(InstanceList li, InstanceList lj)
static InstanceList
ClusterUtils. makeList(Instance i, Instance j)
Methods in cc.mallet.cluster.util with parameters of type InstanceList Modifier and Type Method Description static InstanceList
ClusterUtils. combineLists(InstanceList li, InstanceList lj)
static Clustering
ClusterUtils. createRandomClustering(InstanceList instances, Randoms random)
static Clustering
ClusterUtils. createSingletonClustering(InstanceList instances)
Initializes Clustering to one Instance per cluster. -
Uses of InstanceList in cc.mallet.extract
Methods in cc.mallet.extract that return InstanceList Modifier and Type Method Description InstanceList
CRFExtractor. pipeInstances(java.util.Iterator<Instance> source)
Methods in cc.mallet.extract with parameters of type InstanceList Modifier and Type Method Description Extraction
CRFExtractor. extract(InstanceList ilist)
Assumes Instance.source contains the Tokenization object. -
Uses of InstanceList in cc.mallet.fst
Fields in cc.mallet.fst declared as InstanceList Modifier and Type Field Description protected InstanceList[]
TransducerEvaluator. instanceLists
protected InstanceList
CRFOptimizableByBatchLabelLikelihood. trainingSet
protected InstanceList
CRFOptimizableByLabelLikelihood. trainingSet
protected InstanceList
ThreadedOptimizable. trainingSet
DataMethods in cc.mallet.fst with parameters of type InstanceList Modifier and Type Method Description void
CRF. addFullyConnectedStatesForThreeQuarterLabels(InstanceList trainingSet)
void
HMM. addFullyConnectedStatesForThreeQuarterLabels(InstanceList trainingSet)
java.lang.String
CRF. addOrderNStates(InstanceList trainingSet, int[] orders, boolean[] defaults, java.lang.String start, java.util.regex.Pattern forbidden, java.util.regex.Pattern allowed, boolean fullyConnected)
Assumes that the CRF's output alphabet containsString
s.java.lang.String
HMM. addOrderNStates(InstanceList trainingSet, int[] orders, boolean[] defaults, java.lang.String start, java.util.regex.Pattern forbidden, java.util.regex.Pattern allowed, boolean fullyConnected)
Assumes that the HMM's output alphabet containsString
s.void
CRF. addStatesForBiLabelsConnectedAsIn(InstanceList trainingSet)
Add states to create a second-order Markov model on labels, adding only those transitions the occur in the given trainingSet.void
HMM. addStatesForBiLabelsConnectedAsIn(InstanceList trainingSet)
Add states to create a second-order Markov model on labels, adding only those transitions the occur in the given trainingSet.void
CRF. addStatesForHalfLabelsConnectedAsIn(InstanceList trainingSet)
Add as many states as there are labels, but don't create separate weights for each source-destination pair of states.void
HMM. addStatesForHalfLabelsConnectedAsIn(InstanceList trainingSet)
Add as many states as there are labels, but don't create separate weights for each source-destination pair of states.void
CRF. addStatesForLabelsConnectedAsIn(InstanceList trainingSet)
Add states to create a first-order Markov model on labels, adding only those transitions the occur in the given trainingSet.void
HMM. addStatesForLabelsConnectedAsIn(InstanceList trainingSet)
Add states to create a first-order Markov model on labels, adding only those transitions the occur in the given trainingSet.void
CRF. addStatesForThreeQuarterLabelsConnectedAsIn(InstanceList trainingSet)
Add as many states as there are labels, but don't create separate observational-test-weights for each source-destination pair of states---instead have all the incoming transitions to a state share the same observational-feature-test weights.void
HMM. addStatesForThreeQuarterLabelsConnectedAsIn(InstanceList trainingSet)
Add as many states as there are labels, but don't create separate observational-test-weights for each source-destination pair of states---instead have all the incoming transitions to a state share the same observational-feature-test weights.double
Transducer. averageTokenAccuracy(InstanceList ilist)
Runs inference across all the instances and returns the average token accuracy.void
MultiSegmentationEvaluator. batchTest(InstanceList data, java.util.List<Sequence> predictedSequences, java.lang.String description, java.io.PrintStream viterbiOutputStream)
Tests segmentation using an ArrayList of predicted Sequences instead of aTransducer
.void
CRF. evaluate(TransducerEvaluator eval, InstanceList testing)
Deprecated.void
CRFWriter. evaluateInstanceList(TransducerTrainer transducer, InstanceList instances, java.lang.String description)
void
InstanceAccuracyEvaluator. evaluateInstanceList(TransducerTrainer tt, InstanceList data, java.lang.String description)
void
LabelDistributionEvaluator. evaluateInstanceList(TransducerTrainer transducer, InstanceList instances, java.lang.String description)
void
MultiSegmentationEvaluator. evaluateInstanceList(TransducerTrainer tt, InstanceList data, java.lang.String description)
void
PerClassAccuracyEvaluator. evaluateInstanceList(TransducerTrainer tt, InstanceList data, java.lang.String description)
void
SegmentationEvaluator. evaluateInstanceList(TransducerTrainer tt, InstanceList data, java.lang.String description)
void
TokenAccuracyEvaluator. evaluateInstanceList(TransducerTrainer trainer, InstanceList instances, java.lang.String description)
abstract void
TransducerEvaluator. evaluateInstanceList(TransducerTrainer transducer, InstanceList instances, java.lang.String description)
void
ViterbiWriter. evaluateInstanceList(TransducerTrainer transducerTrainer, InstanceList instances, java.lang.String description)
protected void
CRFOptimizableByBatchLabelLikelihood. gatherConstraints(InstanceList ilist)
Set the constraints by running forward-backward with the output label sequence provided, thus restricting it to only those paths that agree with the label sequence.protected void
CRFOptimizableByLabelLikelihood. gatherConstraints(InstanceList ilist)
CRFOptimizableByLabelLikelihood
CRFTrainerByLabelLikelihood. getOptimizableCRF(InstanceList trainingSet)
CRFOptimizableByBatchLabelLikelihood
CRFTrainerByThreadedLabelLikelihood. getOptimizableCRF(InstanceList trainingSet)
CRFTrainerByValueGradients.OptimizableCRF
CRFTrainerByValueGradients. getOptimizableCRF(InstanceList trainingSet)
Returns an optimizable CRF that contains a collection of objective functions.MEMMTrainer.MEMMOptimizableByLabelLikelihood
MEMMTrainer. getOptimizableMEMM(InstanceList trainingSet)
Optimizer
CRFTrainerByL1LabelLikelihood. getOptimizer(InstanceList trainingSet)
Optimizer
CRFTrainerByLabelLikelihood. getOptimizer(InstanceList trainingSet)
Optimizer
CRFTrainerByThreadedLabelLikelihood. getOptimizer(InstanceList trainingSet)
Optimizer
CRFTrainerByValueGradients. getOptimizer(InstanceList trainingSet)
Returns a L-BFGS optimizer, creating if one doesn't exist.void
CRF. induceFeaturesFor(InstanceList instances)
When the CRF has done feature induction, these new feature conjunctions must be created in the test or validation data in order for them to take effect.Optimizable.ByCombiningBatchGradient
CRFOptimizableByBatchLabelLikelihood.Factory. newCRFOptimizable(CRF crf, InstanceList trainingData, int numBatches)
Optimizable.ByGradientValue
CRFOptimizableByLabelLikelihood.Factory. newCRFOptimizable(CRF crf, InstanceList trainingData)
Sequence[]
CRF. predict(InstanceList testing)
Deprecated.void
CRFTrainerByStochasticGradient. setLearningRateByLikelihood(InstanceList trainingSample)
Automatically sets the learning rate to one that would be goodvoid
CRF. setWeightsDimensionAsIn(InstanceList trainingData)
void
CRF. setWeightsDimensionAsIn(InstanceList trainingData, boolean useSomeUnsupportedTrick)
static void
SimpleTagger. test(TransducerTrainer tt, TransducerEvaluator eval, InstanceList testing)
Test a transducer on the given test data, evaluating accuracy with the given evaluatorboolean
CRFTrainerByLabelLikelihood. train(InstanceList trainingSet, int numIterations)
boolean
CRFTrainerByLabelLikelihood. train(InstanceList training, int numIterationsPerProportion, double[] trainingProportions)
Train a CRF on various-sized subsets of the data.boolean
CRFTrainerByStochasticGradient. train(InstanceList trainingSet, int numIterations)
boolean
CRFTrainerByStochasticGradient. train(InstanceList trainingSet, int numIterations, int numIterationsBetweenEvaluation)
boolean
CRFTrainerByThreadedLabelLikelihood. train(InstanceList trainingSet, int numIterations)
boolean
CRFTrainerByThreadedLabelLikelihood. train(InstanceList training, int numIterationsPerProportion, double[] trainingProportions)
Train a CRF on various-sized subsets of the data.boolean
CRFTrainerByValueGradients. train(InstanceList trainingSet, int numIterations)
Trains a CRF until convergence or specified number of iterations, whichever is earlier.boolean
CRFTrainerByValueGradients. train(InstanceList training, int numIterationsPerProportion, double[] trainingProportions)
Train a CRF on various-sized subsets of the data.boolean
HMM. train(InstanceList ilist)
Trains a HMM without validation and evaluation.boolean
HMM. train(InstanceList ilist, InstanceList validation, InstanceList testing)
Trains a HMM with evaluator set to null.boolean
HMM. train(InstanceList ilist, InstanceList validation, InstanceList testing, TransducerEvaluator eval)
boolean
HMMTrainerByLikelihood. train(InstanceList trainingSet, int numIterations)
boolean
HMMTrainerByLikelihood. train(InstanceList trainingSet, InstanceList unlabeledSet, int numIterations)
boolean
MEMMTrainer. train(InstanceList training)
Trains a MEMM until convergence.boolean
MEMMTrainer. train(InstanceList training, int numIterations)
Trains a MEMM for specified number of iterations or until convergence whichever occurs first; returns true if training converged within specified iterations.boolean
MEMMTrainer. train(InstanceList training, InstanceList validation, InstanceList testing, TransducerEvaluator eval, int numIterations, int numIterationsPerProportion, double[] trainingProportions)
Not implemented yet.boolean
NoopTransducerTrainer. train(InstanceList trainingSet)
boolean
NoopTransducerTrainer. train(InstanceList trainingSet, int numIterations)
boolean
ShallowTransducerTrainer. train(InstanceList trainingSet, int numIterations)
Deprecated.static CRF
SimpleTagger. train(InstanceList training, InstanceList testing, TransducerEvaluator eval, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected, int iterations, double var, CRF crf)
Create and train a CRF model from the given training data, optionally testing it on the given test data.boolean
TransducerTrainer. train(InstanceList trainingSet)
abstract boolean
TransducerTrainer. train(InstanceList trainingSet, int numIterations)
Train the transducer associated with this TransducerTrainer.boolean
CRFTrainerByLabelLikelihood. trainIncremental(InstanceList training)
boolean
CRFTrainerByStochasticGradient. trainIncremental(InstanceList trainingSet)
boolean
CRFTrainerByThreadedLabelLikelihood. trainIncremental(InstanceList training)
boolean
CRFTrainerByValueGradients. trainIncremental(InstanceList training)
Trains a CRF until convergence.abstract boolean
TransducerTrainer.ByIncrements. trainIncremental(InstanceList incrementalTrainingSet)
boolean
CRFTrainerByLabelLikelihood. trainWithFeatureInduction(InstanceList trainingData, InstanceList validationData, InstanceList testingData, TransducerEvaluator eval, int numIterations, int numIterationsBetweenFeatureInductions, int numFeatureInductions, int numFeaturesPerFeatureInduction, double trueLabelProbThreshold, boolean clusteredFeatureInduction, double[] trainingProportions)
boolean
CRFTrainerByLabelLikelihood. trainWithFeatureInduction(InstanceList trainingData, InstanceList validationData, InstanceList testingData, TransducerEvaluator eval, int numIterations, int numIterationsBetweenFeatureInductions, int numFeatureInductions, int numFeaturesPerFeatureInduction, double trueLabelProbThreshold, boolean clusteredFeatureInduction, double[] trainingProportions, java.lang.String gainName)
Train a CRF using feature induction to generate conjunctions of features.boolean
MEMMTrainer. trainWithFeatureInduction(InstanceList trainingData, InstanceList validationData, InstanceList testingData, TransducerEvaluator eval, int numIterations, int numIterationsBetweenFeatureInductions, int numFeatureInductions, int numFeaturesPerFeatureInduction, double trueLabelProbThreshold, boolean clusteredFeatureInduction, double[] trainingProportions, java.lang.String gainName)
Not implemented yet.Constructors in cc.mallet.fst with parameters of type InstanceList Constructor Description CRFOptimizableByBatchLabelLikelihood(CRF crf, InstanceList ilist, int numBatches)
CRFOptimizableByLabelLikelihood(CRF crf, InstanceList ilist)
CRFTrainerByStochasticGradient(CRF crf, InstanceList trainingSample)
LabelDistributionEvaluator(InstanceList[] instanceLists, java.lang.String[] descriptions)
MEMMOptimizableByLabelLikelihood(MEMM memm, InstanceList trainingData)
MultiSegmentationEvaluator(InstanceList[] instanceLists, java.lang.String[] instanceListDescriptions, java.lang.Object[] segmentStartTags, java.lang.Object[] segmentContinueTags)
MultiSegmentationEvaluator(InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2, InstanceList instanceList3, java.lang.String description3, java.lang.Object[] segmentStartTags, java.lang.Object[] segmentContinueTags)
MultiSegmentationEvaluator(InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2, java.lang.Object[] segmentStartTags, java.lang.Object[] segmentContinueTags)
MultiSegmentationEvaluator(InstanceList instanceList1, java.lang.String description1, java.lang.Object[] segmentStartTags, java.lang.Object[] segmentContinueTags)
OptimizableCRF(CRF crf, InstanceList ilist)
PerClassAccuracyEvaluator(InstanceList[] instanceLists, java.lang.String[] descriptions)
PerClassAccuracyEvaluator(InstanceList i1, java.lang.String d1)
PerClassAccuracyEvaluator(InstanceList i1, java.lang.String d1, InstanceList i2, java.lang.String d2)
SegmentationEvaluator(InstanceList[] instanceLists, java.lang.String[] descriptions)
SegmentationEvaluator(InstanceList instanceList1, java.lang.String description1)
SegmentationEvaluator(InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2)
SegmentationEvaluator(InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2, InstanceList instanceList3, java.lang.String description3)
ThreadedOptimizable(Optimizable.ByCombiningBatchGradient optimizable, InstanceList trainingSet, int numFactors, CacheStaleIndicator cacheIndicator)
Initializes the optimizable and starts new threads.TokenAccuracyEvaluator(InstanceList[] instanceLists, java.lang.String[] descriptions)
TokenAccuracyEvaluator(InstanceList instanceList1, java.lang.String description1)
TokenAccuracyEvaluator(InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2)
TokenAccuracyEvaluator(InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2, InstanceList instanceList3, java.lang.String description3)
TransducerEvaluator(InstanceList[] instanceLists, java.lang.String[] instanceListDescriptions)
ViterbiWriter(java.lang.String filenamePrefix, InstanceList[] instanceLists, java.lang.String[] descriptions)
ViterbiWriter(java.lang.String filenamePrefix, InstanceList instanceList1, java.lang.String description1)
ViterbiWriter(java.lang.String filenamePrefix, InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2)
ViterbiWriter(java.lang.String filenamePrefix, InstanceList instanceList1, java.lang.String description1, InstanceList instanceList2, java.lang.String description2, InstanceList instanceList3, java.lang.String description3)
-
Uses of InstanceList in cc.mallet.fst.confidence
Methods in cc.mallet.fst.confidence with parameters of type InstanceList Modifier and Type Method Description java.util.ArrayList
ConstrainedViterbiTransducerCorrector. correctLeastConfidentSegments(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags)
java.util.ArrayList
ConstrainedViterbiTransducerCorrector. correctLeastConfidentSegments(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags, boolean findIncorrect)
Returns an ArrayList of corrected Sequences.java.util.ArrayList
IsolatedSegmentTransducerCorrector. correctLeastConfidentSegments(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags)
java.util.ArrayList
TransducerCorrector. correctLeastConfidentSegments(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags)
void
ConfidenceCorrectorEvaluator. evaluate(Transducer model, java.util.ArrayList predictions, InstanceList ilist, java.util.ArrayList correctedSegments, java.lang.String description, java.io.PrintStream outputStream, boolean errorsInUncorrected)
Only evaluates over sequences which contain errors.java.util.ArrayList
ConstrainedViterbiTransducerCorrector. getLeastConfidentSegments(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags)
Returns the least confident segments inilist
InstanceWithConfidence[]
TransducerSequenceConfidenceEstimator. rankInstancesByConfidence(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags)
Ranks allSequences
s in thisInstanceList
by confidence estimate.PipedInstanceWithConfidence[]
MaxEntSequenceConfidenceEstimator. rankPipedInstancesByConfidence(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags)
Segment[]
TransducerConfidenceEstimator. rankSegmentsByConfidence(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] continueTags)
Ranks allSegment
s in thisInstanceList
by confidence estimate.MaxEnt
MaxEntConfidenceEstimator. trainClassifier(InstanceList ilist, java.lang.String correct, java.lang.String incorrect)
MaxEnt
MaxEntSequenceConfidenceEstimator. trainClassifier(InstanceList ilist, java.lang.String correct, java.lang.String incorrect)
Train underlying classifier onilist
. -
Uses of InstanceList in cc.mallet.fst.semi_supervised
Fields in cc.mallet.fst.semi_supervised declared as InstanceList Modifier and Type Field Description protected InstanceList
CRFOptimizableByEntropyRegularization. data
Methods in cc.mallet.fst.semi_supervised with parameters of type InstanceList Modifier and Type Method Description Optimizable.ByGradientValue
CRFTrainerByGE. getOptimizable(InstanceList unlabeled)
static java.util.HashMap<java.lang.Integer,double[][]>
FSTConstraintUtil. loadGEConstraints(java.io.Reader fileReader, InstanceList data)
boolean
CRFTrainerByEntropyRegularization. train(InstanceList trainingSet, int numIterations)
boolean
CRFTrainerByEntropyRegularization. train(InstanceList labeled, InstanceList unlabeled, int numIterations)
Performs CRF training with label likelihood and entropy regularization.boolean
CRFTrainerByGE. train(InstanceList unlabeledSet, int numIterations)
boolean
CRFTrainerByLikelihoodAndGE. train(InstanceList trainingSet, int numIterations)
boolean
CRFTrainerByLikelihoodAndGE. train(InstanceList trainingSet, InstanceList unlabeledSet, int numIterations)
Constructors in cc.mallet.fst.semi_supervised with parameters of type InstanceList Constructor Description CRFOptimizableByEntropyRegularization(CRF crf, InstanceList ilist)
Initializes the structures (sets the scaling factor to 1.0).CRFOptimizableByEntropyRegularization(CRF crf, InstanceList ilist, double scalingFactor)
Initializes the structures.CRFOptimizableByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, InstanceList data, StateLabelMap map, int numThreads)
CRFOptimizableByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, InstanceList data, StateLabelMap map, int numThreads, double weight)
-
Uses of InstanceList in cc.mallet.fst.semi_supervised.constraints
Methods in cc.mallet.fst.semi_supervised.constraints with parameters of type InstanceList Modifier and Type Method Description java.util.BitSet
GEConstraint. preProcess(InstanceList data)
java.util.BitSet
OneLabelGEConstraints. preProcess(InstanceList data)
java.util.BitSet
OneLabelL2RangeGEConstraints. preProcess(InstanceList data)
java.util.BitSet
SelfTransitionGEConstraint. preProcess(InstanceList data)
java.util.BitSet
TwoLabelGEConstraints. preProcess(InstanceList data)
-
Uses of InstanceList in cc.mallet.fst.semi_supervised.pr
Fields in cc.mallet.fst.semi_supervised.pr declared as InstanceList Modifier and Type Field Description protected InstanceList
ConstraintsOptimizableByPR. trainingSet
protected InstanceList
CRFOptimizableByKL. trainingSet
Methods in cc.mallet.fst.semi_supervised.pr with parameters of type InstanceList Modifier and Type Method Description boolean
CRFTrainerByPR. train(InstanceList train, int numIterations)
boolean
CRFTrainerByPR. train(InstanceList train, int minIter, int maxIter)
boolean
CRFTrainerByPR. train(InstanceList train, int minIter, int maxIter, int maxIterPerStep)
Constructors in cc.mallet.fst.semi_supervised.pr with parameters of type InstanceList Constructor Description ConstraintsOptimizableByPR(CRF crf, InstanceList ilist, PRAuxiliaryModel model)
ConstraintsOptimizableByPR(CRF crf, InstanceList ilist, PRAuxiliaryModel model, int numThreads)
CRFOptimizableByKL(CRF crf, InstanceList trainingSet, PRAuxiliaryModel auxModel, double[][][][] cachedDots, int numThreads, double weight)
-
Uses of InstanceList in cc.mallet.fst.semi_supervised.pr.constraints
Methods in cc.mallet.fst.semi_supervised.pr.constraints with parameters of type InstanceList Modifier and Type Method Description java.util.BitSet
OneLabelL2IndPRConstraints. preProcess(InstanceList data)
java.util.BitSet
OneLabelL2PRConstraints. preProcess(InstanceList data)
java.util.BitSet
PRConstraint. preProcess(InstanceList data)
-
Uses of InstanceList in cc.mallet.fst.semi_supervised.tui
Methods in cc.mallet.fst.semi_supervised.tui with parameters of type InstanceList Modifier and Type Method Description static CRF
SimpleTaggerWithConstraints. getCRF(InstanceList training, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected)
static void
SimpleTaggerWithConstraints. test(TransducerTrainer tt, TransducerEvaluator eval, InstanceList testing)
Test a transducer on the given test data, evaluating accuracy with the given evaluatorstatic CRF
SimpleTaggerWithConstraints. trainGE(InstanceList training, InstanceList testing, java.util.ArrayList<GEConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var, int resets)
Create and train a CRF model from the given training data, optionally testing it on the given test data.static CRF
SimpleTaggerWithConstraints. trainPR(InstanceList training, InstanceList testing, java.util.ArrayList<PRConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var)
Create and train a CRF model from the given training data, optionally testing it on the given test data. -
Uses of InstanceList in cc.mallet.pipe
Methods in cc.mallet.pipe that return InstanceList Modifier and Type Method Description static InstanceList
AddClassifierTokenPredictions. convert(InstanceList ilist, Noop alphabetsPipe)
Converts each instance containing a FeatureVectorSequence to multiple instances, each containing an AugmentableFeatureVector as data.static InstanceList
AddClassifierTokenPredictions. convert(Instance inst, Noop alphabetsPipe)
Methods in cc.mallet.pipe with parameters of type InstanceList Modifier and Type Method Description static InstanceList
AddClassifierTokenPredictions. convert(InstanceList ilist, Noop alphabetsPipe)
Converts each instance containing a FeatureVectorSequence to multiple instances, each containing an AugmentableFeatureVector as data.Constructors in cc.mallet.pipe with parameters of type InstanceList Constructor Description AddClassifierTokenPredictions(AddClassifierTokenPredictions.TokenClassifiers tokenClassifiers, int[] predRanks2add, boolean binary, InstanceList testList)
AddClassifierTokenPredictions(InstanceList trainList)
AddClassifierTokenPredictions(InstanceList trainList, InstanceList testList)
TokenClassifiers(ClassifierTrainer trainer, InstanceList trainList, int randSeed, int numCV)
TokenClassifiers(InstanceList trainList)
Train a token classifier using the given Instances with 5-fold cross validationTokenClassifiers(InstanceList trainList, int randSeed, int numCV)
-
Uses of InstanceList in cc.mallet.pipe.iterator
Methods in cc.mallet.pipe.iterator that return InstanceList Modifier and Type Method Description static InstanceList
DBInstanceIterator. getInstances(java.lang.String dbName)
Constructors in cc.mallet.pipe.iterator with parameters of type InstanceList Constructor Description SegmentIterator(Transducer model, InstanceList ilist, java.lang.Object[] segmentStartTags, java.lang.Object[] segmentContinueTags)
NOTE!: Assumes thatsegmentStartTags[i]
corresponds tosegmentContinueTags[i]
.SegmentIterator(InstanceList ilist, java.lang.Object[] startTags, java.lang.Object[] inTags, java.util.ArrayList predictions)
Useful when noTransduce
is specified. -
Uses of InstanceList in cc.mallet.regression
Constructors in cc.mallet.regression with parameters of type InstanceList Constructor Description CoordinateDescent(InstanceList data, double l1Weight)
LeastSquares(InstanceList data)
LeastSquares(InstanceList data, double regularization)
LinearRegressionTrainer(InstanceList data)
-
Uses of InstanceList in cc.mallet.regression.tui
Constructors in cc.mallet.regression.tui with parameters of type InstanceList Constructor Description Regression(InstanceList data, double regularization)
-
Uses of InstanceList in cc.mallet.topics
Fields in cc.mallet.topics declared as InstanceList Modifier and Type Field Description InstanceList
RTopicModel. instances
InstanceList
WordEmbeddingCallable. instances
protected InstanceList
LDAHyper. testing
Deprecated.Methods in cc.mallet.topics that return InstanceList Modifier and Type Method Description InstanceList
LDA. getInstanceList()
Deprecated.Methods in cc.mallet.topics with parameters of type InstanceList Modifier and Type Method Description void
LDA. addDocuments(InstanceList additionalDocuments, int numIterations, int showTopicsInterval, int outputModelInterval, java.lang.String outputModelFilename, Randoms r)
Deprecated.static void
RTopicModel. addInstance(InstanceList instances, java.lang.String id, java.lang.String text)
This is a helper method that simplifies class casting from rJava.void
DMRTopicModel. addInstances(InstanceList training)
void
LabeledLDA. addInstances(InstanceList training)
void
LDAHyper. addInstances(InstanceList training)
Deprecated.void
LDAHyper. addInstances(InstanceList training, java.util.List<LabelSequence> topics)
Deprecated.void
NPTopicModel. addInstances(InstanceList training, int initialTopics)
void
ParallelTopicModel. addInstances(InstanceList training)
void
PolylingualTopicModel. addInstances(InstanceList[] training)
static void
RTopicModel. addInstances(InstanceList instances, java.lang.String[] ids, java.lang.String[] texts)
void
SimpleLDA. addInstances(InstanceList training)
void
WeightedTopicModel. addInstances(InstanceList training)
void
WordEmbeddings. countWords(InstanceList instances, double samplingFactor)
double
HierarchicalLDA. empiricalLikelihood(int numSamples, InstanceList testing)
For use with empirical likelihood evaluation: sample a path through the tree, then sample a multinomial over topics in that path, then return a weighted sum of words.double
LDAHyper. empiricalLikelihood(int numSamples, InstanceList testing)
Deprecated.void
HierarchicalPAM. estimate(InstanceList documents, InstanceList testing, int numIterations, int showTopicsInterval, int outputModelInterval, int optimizeInterval, java.lang.String outputModelFilename, Randoms r)
void
LDA. estimate(InstanceList documents, int numIterations, int showTopicsInterval, int outputModelInterval, java.lang.String outputModelFilename, Randoms r)
Deprecated.void
PAM4L. estimate(InstanceList documents, int numIterations, int optimizeInterval, int showTopicsInterval, int outputModelInterval, java.lang.String outputModelFilename, Randoms r)
void
TopicalNGrams. estimate(InstanceList documents, int numIterations, int showTopicsInterval, int outputModelInterval, java.lang.String outputModelFilename, Randoms r)
double
MarginalProbEstimator. evaluateLeftToRight(InstanceList testing, int numParticles, boolean usingResampling, java.io.PrintStream docProbabilityStream)
void
LDAStream. inferenceWithTheta(int maxIteration, InstanceList theta)
void
HierarchicalLDA. initialize(InstanceList instances, InstanceList testing, int numLevels, Randoms random)
void
RTopicModel. loadDocuments(InstanceList instances)
void
LDAHyper. setTestingInstances(InstanceList testing)
Deprecated.Held-out instances for empirical likelihood calculationvoid
WordEmbeddings. train(InstanceList instances, int numThreads, int numSamples)
void
TopicInferencer. writeInferredDistributions(InstanceList instances, java.io.File distributionsFile, int numIterations, int thinning, int burnIn, double threshold, int max)
Infer topics for the provided instances and write distributions to the provided file.Constructors in cc.mallet.topics with parameters of type InstanceList Constructor Description DMROptimizable(InstanceList instances, MaxEnt initialClassifier)
NonNegativeMatrixFactorization(InstanceList instances, int numFactors, boolean idfWeighting)
NonNegativeMatrixFactorization(InstanceList instances, int numFactors, boolean idfWeighting, Randoms random)
WordEmbeddingCallable(WordEmbeddings model, InstanceList instances, int numSamples, int numThreads, int threadID)
-
Uses of InstanceList in cc.mallet.types
Subclasses of InstanceList in cc.mallet.types Modifier and Type Class Description class
MultiInstanceList
An implementation of InstanceList that logically combines multiple instance lists so that they appear as one list without copying the original lists.class
PagedInstanceList
An InstanceList which avoids OutOfMemoryErrors by saving Instances to disk when there is not enough memory to create a new Instance.Methods in cc.mallet.types that return InstanceList Modifier and Type Method Description InstanceList
InstanceList. cloneEmpty()
InstanceList
MultiInstanceList. cloneEmpty()
InstanceList
PagedInstanceList. cloneEmpty()
protected InstanceList
InstanceList. cloneEmptyInto(InstanceList ret)
protected InstanceList
MultiInstanceList. cloneEmptyInto(InstanceList ret)
InstanceList
InvertedIndex. getInstanceList()
static InstanceList
InstanceList. load(java.io.File file)
Constructs a newInstanceList
, deserialized fromfile
.static InstanceList
PagedInstanceList. load(java.io.File file)
Constructs a newInstanceList
, deserialized fromfile
.InstanceList[]
CrossValidationIterator. next()
Returns the next training/testing split.InstanceList[]
InstanceList.CrossValidationIterator. next()
InstanceList[]
CrossValidationIterator. nextSplit()
Returns the next training/testing split.InstanceList[]
CrossValidationIterator. nextSplit(int numTrainFolds)
Returns the next training/testing split.InstanceList[]
InstanceList.CrossValidationIterator. nextSplit()
Returns the next training/testing split.InstanceList[]
InstanceList.CrossValidationIterator. nextSplit(int numTrainFolds)
Returns the next split, given the number of folds you want in the training data.InstanceList
InstanceList. sampleWithInstanceWeights(java.util.Random r)
Deprecated.InstanceList
InstanceList. sampleWithReplacement(java.util.Random r, int numSamples)
InstanceList
InstanceList. sampleWithWeights(java.util.Random r, double[] weights)
Returns anInstanceList
of the same size, where the instances come from the random sampling (with replacement) of this list using the given weights.InstanceList
InstanceList. shallowClone()
InstanceList
MultiInstanceList. shallowClone()
InstanceList
PagedInstanceList. shallowClone()
InstanceList[]
InstanceList. split(double[] proportions)
InstanceList[]
InstanceList. split(java.util.Random r, double[] proportions)
Shuffles the elements of this list among several smaller lists.InstanceList[]
MultiInstanceList. split(double[] proportions)
InstanceList[]
MultiInstanceList. split(java.util.Random r, double[] proportions)
InstanceList[]
PagedInstanceList. split(java.util.Random r, double[] proportions)
Shuffles the elements of this list among several smaller lists.InstanceList[]
InstanceList. splitInOrder(double[] proportions)
Chops this list into several sequential sublists.InstanceList[]
InstanceList. splitInOrder(int[] counts)
InstanceList[]
MultiInstanceList. splitInOrder(double[] proportions)
InstanceList[]
MultiInstanceList. splitInOrder(int[] counts)
InstanceList[]
InstanceList. splitInTwoByModulo(int m)
Returns a pair of new lists such that the first list in the pair contains everym
th element of this list, starting with the first.InstanceList[]
MultiInstanceList. splitInTwoByModulo(int m)
InstanceList[]
InstanceList. stratifiedSplit(java.util.Random r, double[] proportions)
Shuffles the elements of this list among several smaller lists, each sublist having a number of elements proportional to the amount given in the array.InstanceList[]
InstanceList. stratifiedSplitInOrder(double[] proportions)
Chops this list into several sequential sublists, where each sublist contains an (approximately) equal proportion of each target label.InstanceList
InstanceList. subList(double proportion)
InstanceList
InstanceList. subList(int start, int end)
InstanceList
MultiInstanceList. subList(double proportion)
InstanceList
MultiInstanceList. subList(int start, int end)
Methods in cc.mallet.types with parameters of type InstanceList Modifier and Type Method Description protected static java.lang.Object[]
GainRatio. calcGainRatios(InstanceList ilist, int[] instIndices, int minNumInsts)
Calculates gain ratios for all (feature, split point) pairs snd returns array of:static double[][]
PerLabelInfoGain. calcPerLabelInfoGains(InstanceList ilist)
protected InstanceList
InstanceList. cloneEmptyInto(InstanceList ret)
protected InstanceList
MultiInstanceList. cloneEmptyInto(InstanceList ret)
static GainRatio
GainRatio. createGainRatio(InstanceList ilist)
Constructs a GainRatio object.static GainRatio
GainRatio. createGainRatio(InstanceList ilist, int[] instIndices, int minNumInsts)
Constructs a GainRatio objectvoid
FeatureInducer. induceFeaturesFor(InstanceList ilist, boolean withFeatureShrinkage, boolean addPerClassFeatures)
PartiallyRankedFeatureVector
PartiallyRankedFeatureVector.Factory. newPartiallyRankedFeatureVector(InstanceList ilist, LabelVector[] posteriors)
PartiallyRankedFeatureVector[]
PartiallyRankedFeatureVector.PerLabelFactory. newPartiallyRankedFeatureVectors(InstanceList ilist, LabelVector[] posteriors)
RankedFeatureVector
BiNormalSeparation.Factory. newRankedFeatureVector(InstanceList instanceList)
Create a new feature ranking for the given instance list.RankedFeatureVector
ExpGain.Factory. newRankedFeatureVector(InstanceList ilist)
RankedFeatureVector
FeatureCounts.Factory. newRankedFeatureVector(InstanceList instances)
RankedFeatureVector
GradientGain.Factory. newRankedFeatureVector(InstanceList ilist)
RankedFeatureVector
InfoGain.Factory. newRankedFeatureVector(InstanceList ilist)
RankedFeatureVector
RankedFeatureVector.Factory. newRankedFeatureVector(InstanceList ilist)
RankedFeatureVector[]
PerLabelFeatureCounts.Factory. newRankedFeatureVectors(InstanceList ilist)
RankedFeatureVector[]
PerLabelInfoGain.Factory. newRankedFeatureVectors(InstanceList ilist)
RankedFeatureVector[]
RankedFeatureVector.PerLabelFactory. newRankedFeatureVectors(InstanceList ilist)
void
FeatureSelector. selectFeaturesFor(InstanceList ilist)
void
FeatureSelector. selectFeaturesForAllLabels(InstanceList ilist)
void
FeatureSelector. selectFeaturesForPerLabel(InstanceList ilist)
static int[]
GainRatio. sortInstances(InstanceList ilist, int[] instIndices, int featureIndex)
Constructors in cc.mallet.types with parameters of type InstanceList Constructor Description BiNormalSeparation(InstanceList ilist)
Create a new feature ranking for the given instance list.CrossValidationIterator(InstanceList ilist, int _nfolds)
Constructs a new n-fold cross-validation iteratorCrossValidationIterator(InstanceList ilist, int nfolds, java.util.Random r)
Constructs a new n-fold cross-validation iteratorExpGain(InstanceList ilist, Classification[] classifications, double gaussianPriorVariance)
ExpGain(InstanceList ilist, LabelVector[] classifications, double gaussianPriorVariance)
FeatureCounts(InstanceList instances)
FeatureInducer(RankedFeatureVector.Factory ranker, InstanceList ilist, int numNewFeatures)
FeatureInducer(RankedFeatureVector.Factory ranker, InstanceList ilist, int numNewFeatures, int beam1, int beam2)
GradientGain(InstanceList ilist, Classification[] classifications)
GradientGain(InstanceList ilist, LabelVector[] classifications)
InfoGain(InstanceList ilist)
InvertedIndex(InstanceList ilist)
KLGain(InstanceList ilist, Classification[] classifications)
KLGain(InstanceList ilist, LabelVector[] classifications)
MultiInstanceList(InstanceList[] lists)
Constructs aMultiInstanceList
with an array ofInstanceList
PerLabelFeatureCounts(InstanceList ilist)
PerLabelInfoGain(InstanceList ilist)
Constructor parameters in cc.mallet.types with type arguments of type InstanceList Constructor Description MultiInstanceList(java.util.List<InstanceList> lists)
-
Uses of InstanceList in cc.mallet.util
Methods in cc.mallet.util with parameters of type InstanceList Modifier and Type Method Description static SparseVector
VectorStats. mean(InstanceList instances)
Returns aSparseVector
whose entries (taken from the union of those in the instances) are the expected values of those in theInstanceList
.static SparseVector
VectorStats. mean(InstanceList instances, int numIndices)
Returns aSparseVector
whose entries (dense with the given number of indices) are the expected values of those in theInstanceList
.static SparseVector
VectorStats. mean(InstanceList instances, int[] indices)
Returns aSparseVector
whose entries (the given indices) are the expected values of those in theInstanceList
.static SparseVector
VectorStats. stddev(InstanceList instances)
Square root of unbiased variance.static SparseVector
VectorStats. stddev(InstanceList instances, boolean unbiased)
Square root of variance.static SparseVector
VectorStats. stddev(InstanceList instances, SparseVector mean)
Square root of unbiased variance of instances having the given meanstatic SparseVector
VectorStats. stddev(InstanceList instances, SparseVector mean, boolean unbiased)
Square root of variance.static SparseVector
VectorStats. variance(InstanceList instances)
Returns unbiased variancestatic SparseVector
VectorStats. variance(InstanceList instances, boolean unbiased)
Returns aSparseVector
whose entries (taken from the union of those in the instances) are the variance of those in theInstanceList
.static SparseVector
VectorStats. variance(InstanceList instances, SparseVector mean)
Returns unbiased variance of instances having the given mean.static SparseVector
VectorStats. variance(InstanceList instances, SparseVector mean, boolean unbiased)
Returns aSparseVector
whose entries (taken from the mean argument) are the variance of those in theInstanceList
.Constructors in cc.mallet.util with parameters of type InstanceList Constructor Description FeatureCooccurrenceCounter(InstanceList instances)
FeatureCountTool(InstanceList instances)
-