Interface MaxEntPRConstraint
-
- All Known Implementing Classes:
MaxEntFLPRConstraints
,MaxEntL2FLPRConstraints
public interface MaxEntPRConstraint
Interface for expectation constraints for use with Posterior Regularization (PR).- Author:
- Gregory Druck
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description double
getAuxiliaryValueContribution(double[] parameters)
double
getCompleteValueContribution()
void
getGradient(double[] parameters, double[] gradient)
double
getScore(FeatureVector input, int label, double[] parameters)
void
incrementExpectations(FeatureVector fv, double[] dist, double weight)
int
numDimensions()
void
preProcess(FeatureVector input)
Gives the constraint the option to do some caching using only the FeatureVector.java.util.BitSet
preProcess(InstanceList data)
void
zeroExpectations()
Zero expectation values.
-
-
-
Method Detail
-
numDimensions
int numDimensions()
-
getScore
double getScore(FeatureVector input, int label, double[] parameters)
-
incrementExpectations
void incrementExpectations(FeatureVector fv, double[] dist, double weight)
-
getAuxiliaryValueContribution
double getAuxiliaryValueContribution(double[] parameters)
-
getCompleteValueContribution
double getCompleteValueContribution()
-
getGradient
void getGradient(double[] parameters, double[] gradient)
-
zeroExpectations
void zeroExpectations()
Zero expectation values. Called before re-computing gradient.
-
preProcess
java.util.BitSet preProcess(InstanceList data)
- Parameters:
data
- Unlabeled data- Returns:
- Returns a bitset of the size of the data, with the bit set if a constraint feature fires in that instance.
-
preProcess
void preProcess(FeatureVector input)
Gives the constraint the option to do some caching using only the FeatureVector. For example, the constrained input features could be cached.- Parameters:
input
- FeatureVector input
-
-