Package cc.mallet.topics
Class DMRTopicModel
- java.lang.Object
-
- cc.mallet.topics.ParallelTopicModel
-
- cc.mallet.topics.DMRTopicModel
-
- All Implemented Interfaces:
java.io.Serializable
public class DMRTopicModel extends ParallelTopicModel
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description java.lang.StringparametersFilenameintsaveParametersInterval-
Fields inherited from class cc.mallet.topics.ParallelTopicModel
alpha, alphabet, alphaSum, beta, betaSum, burninPeriod, data, DEFAULT_BETA, docLengthCounts, formatter, logger, modelFilename, numIterations, numTopics, numTypes, optimizeInterval, printLogLikelihood, randomSeed, saveModelInterval, saveSampleInterval, saveStateInterval, showTopicsInterval, stateFilename, temperingInterval, tokensPerTopic, topicAlphabet, topicBits, topicDocCounts, topicMask, totalTokens, typeTopicCounts, UNASSIGNED_TOPIC, usingSymmetricAlpha, wordsPerTopic
-
-
Constructor Summary
Constructors Constructor Description DMRTopicModel(int numberOfTopics)
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description voidaddInstances(InstanceList training)voidcacheAlphas(Instance instance, int docIndex)Set alpha based on features in an instancevoidestimate()MaxEntgetDmrParameters()DMRInferencergetInferencer()Return a tool for estimating topic distributions for new documentsvoidlearnParameters()static voidmain(java.lang.String[] args)doublemodelLogLikelihood()voidprintTopWords(java.io.PrintStream out, int numWords, boolean usingNewLines)static DMRTopicModelread(java.io.File f)voidwrite(java.io.File serializedModelFile)voidwriteParameters(java.io.File parameterFile)-
Methods inherited from class cc.mallet.topics.ParallelTopicModel
buildInitialTypeTopicCounts, displayTopWords, getAlphabet, getData, getDocumentTopics, getNumTopics, getProbEstimator, getSortedWords, getSubCorpusTopicWords, getTokensPerTopic, getTopicAlphabet, getTopicDocuments, getTopicProbabilities, getTopicProbabilities, getTopicWords, getTopWords, getTypeTopicCounts, initializeFromState, maximize, optimizeAlpha, optimizeBeta, printDenseDocumentTopics, printDocumentTopics, printDocumentTopics, printDocumentTopics, printState, printState, printTopicDocuments, printTopicDocuments, printTopicWordWeights, printTopicWordWeights, printTopWords, printTypeTopicCounts, setBurninPeriod, setNumIterations, setNumThreads, setNumTopics, setOptimizeInterval, setRandomSeed, setSaveSerializedModel, setSaveState, setSymmetricAlpha, setTemperingInterval, setTopicDisplay, temperAlpha, topicPhraseXMLReport, topicXMLReport
-
-
-
-
Method Detail
-
addInstances
public void addInstances(InstanceList training)
- Overrides:
addInstancesin classParallelTopicModel
-
estimate
public void estimate() throws java.io.IOException- Overrides:
estimatein classParallelTopicModel- Throws:
java.io.IOException
-
cacheAlphas
public void cacheAlphas(Instance instance, int docIndex)
Set alpha based on features in an instance
-
learnParameters
public void learnParameters()
-
printTopWords
public void printTopWords(java.io.PrintStream out, int numWords, boolean usingNewLines)- Overrides:
printTopWordsin classParallelTopicModel
-
writeParameters
public void writeParameters(java.io.File parameterFile) throws java.io.IOException- Throws:
java.io.IOException
-
getDmrParameters
public MaxEnt getDmrParameters()
-
modelLogLikelihood
public double modelLogLikelihood()
- Overrides:
modelLogLikelihoodin classParallelTopicModel
-
getInferencer
public DMRInferencer getInferencer()
Return a tool for estimating topic distributions for new documents- Overrides:
getInferencerin classParallelTopicModel
-
write
public void write(java.io.File serializedModelFile)
- Overrides:
writein classParallelTopicModel
-
read
public static DMRTopicModel read(java.io.File f) throws java.lang.Exception
- Throws:
java.lang.Exception
-
main
public static void main(java.lang.String[] args) throws java.io.IOException- Throws:
java.io.IOException
-
-