Interface MaxEntGEConstraint
-
- All Known Implementing Classes:
MaxEntFLGEConstraints
,MaxEntKLFLGEConstraints
,MaxEntL2FLGEConstraints
,MaxEntRangeL2FLGEConstraints
public interface MaxEntGEConstraint
Interface for expectation constraints for use with Generalized Expectation (GE).- Author:
- Gregory Druck
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description void
computeExpectations(FeatureVector fv, double[] dist, double weight)
Compute expectations using provided distribution over labels.double
getCompositeConstraintFeatureValue(FeatureVector input, int label)
Computes the composite constraint feature value (over all constraint features) for FeatureVector fv and label label.double
getValue()
Returns the total constraint value.void
preProcess(FeatureVector input)
Gives the constraint the option to do some caching using only the FeatureVector.java.util.BitSet
preProcess(InstanceList data)
void
zeroExpectations()
Zero expectation values.
-
-
-
Method Detail
-
getCompositeConstraintFeatureValue
double getCompositeConstraintFeatureValue(FeatureVector input, int label)
Computes the composite constraint feature value (over all constraint features) for FeatureVector fv and label label.- Parameters:
input
- input FeatureVectorlabel
- output label index- Returns:
- Constraint feature value
-
getValue
double getValue()
Returns the total constraint value.- Returns:
- Constraint value
-
computeExpectations
void computeExpectations(FeatureVector fv, double[] dist, double weight)
Compute expectations using provided distribution over labels.- Parameters:
fv
- FeatureVectordist
- Distribution over labelsdata
- Unlabeled data
-
zeroExpectations
void zeroExpectations()
Zero expectation values. Called before re-computing gradient.
-
preProcess
java.util.BitSet preProcess(InstanceList data)
- Parameters:
data
- Unlabeled data- Returns:
- Returns a bitset of the size of the data, with the bit set if a constraint feature fires in that instance.
-
preProcess
void preProcess(FeatureVector input)
Gives the constraint the option to do some caching using only the FeatureVector. For example, the constrained input features could be cached.- Parameters:
input
- FeatureVector input
-
-