Uses of Interface
cc.mallet.types.Sequence
-
Packages that use Sequence Package Description cc.mallet.extract Unimplemented.cc.mallet.fst Transducers, including Conditional Random Fields (CRFs).cc.mallet.fst.confidence cc.mallet.fst.semi_supervised.pr cc.mallet.fst.semi_supervised.tui cc.mallet.pipe.iterator Classes that generate instances from different kinds of input or data structures.cc.mallet.types Fundamental MALLET types, including FeatureVector, Instance, Label etc.cc.mallet.util Miscellaneous utilities including command line processing, math functions, lexing, logging. -
-
Uses of Sequence in cc.mallet.extract
Subinterfaces of Sequence in cc.mallet.extract Modifier and Type Interface Description interface
Tokenization
Classes in cc.mallet.extract that implement Sequence Modifier and Type Class Description class
LabeledSpans
Created: Oct 31, 2004class
StringTokenization
Methods in cc.mallet.extract that return Sequence Modifier and Type Method Description Sequence
DocumentExtraction. getPredictedLabels()
Sequence
CRFExtractor. pipeInput(java.lang.Object input)
Methods in cc.mallet.extract with parameters of type Sequence Modifier and Type Method Description LabeledSpans
BIOTokenizationFilter. constructLabeledSpans(LabelAlphabet dict, java.lang.Object document, Label backgroundTag, Tokenization input, Sequence seq)
LabeledSpans
ConfidenceTokenizationFilter. constructLabeledSpans(LabelAlphabet dict, java.lang.Object document, Label backgroundTag, Tokenization input, Sequence seq)
LabeledSpans
DefaultTokenizationFilter. constructLabeledSpans(LabelAlphabet dict, java.lang.Object document, Label backgroundTag, Tokenization input, Sequence seq)
LabeledSpans
HierarchicalTokenizationFilter. constructLabeledSpans(LabelAlphabet dict, java.lang.Object document, Label backgroundTag, Tokenization input, Sequence seq)
LabeledSpans
TokenizationFilter. constructLabeledSpans(LabelAlphabet dict, java.lang.Object document, Label backgroundTag, Tokenization input, Sequence seq)
Converts a the sequence of labels into a set of labeled spans.Constructors in cc.mallet.extract with parameters of type Sequence Constructor Description DocumentExtraction(java.lang.String name, LabelAlphabet dict, Tokenization input, Sequence predicted, Sequence target, java.lang.String background)
DocumentExtraction(java.lang.String name, LabelAlphabet dict, Tokenization input, Sequence predicted, Sequence target, java.lang.String background, TokenizationFilter filter)
DocumentExtraction(java.lang.String name, LabelAlphabet dict, Tokenization input, Sequence predicted, java.lang.String background)
Extraction(Extractor extractor, LabelAlphabet dict, java.lang.String name, Tokenization input, Sequence output, java.lang.String background)
Creates an extration given a sequence output by some kind of per-sequece labeler, like an HMM or a CRF. -
Uses of Sequence in cc.mallet.fst
Methods in cc.mallet.fst that return Sequence Modifier and Type Method Description static Sequence[]
SimpleTagger. apply(Transducer model, Sequence input, int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences.Sequence<java.lang.Object>
MaxLattice. bestOutputSequence()
Sequence<java.lang.Object>
MaxLatticeDefault. bestOutputSequence()
Sequence<Transducer.State>
MaxLattice. bestStateSequence()
Sequence<Transducer.State>
MaxLatticeDefault. bestStateSequence()
Sequence
MaxLatticeDefault. getInput()
Sequence
Segment. getInput()
Sequence
SumLattice. getInput()
Sequence
SumLatticeBeam. getInput()
Sequence
SumLatticeDefault. getInput()
Sequence
SumLatticeScaling. getInput()
Sequence
Segment. getPredicted()
Sequence
MaxLatticeDefault. getProvidedOutput()
Sequence
Segment. getSegmentInputSequence()
Sequence
Segment. getTruth()
Sequence[]
CRF. predict(InstanceList testing)
Deprecated.Sequence
Transducer. transduce(Sequence input)
Converts the given sequence into another sequence according to this transducer.Methods in cc.mallet.fst that return types with arguments of type Sequence Modifier and Type Method Description java.util.List<Sequence<java.lang.Object>>
MaxLattice. bestOutputSequences(int n)
java.util.List<Sequence<java.lang.Object>>
MaxLatticeDefault. bestOutputSequences(int n)
java.util.List<Sequence<Transducer.State>>
MaxLattice. bestStateSequences(int n)
java.util.List<Sequence<Transducer.State>>
MaxLatticeDefault. bestStateSequences(int n)
Methods in cc.mallet.fst with parameters of type Sequence Modifier and Type Method Description static Sequence[]
SimpleTagger. apply(Transducer model, Sequence input, int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences.double
MaxLattice. elementwiseAccuracy(Sequence referenceOutput)
double
MaxLatticeDefault. elementwiseAccuracy(Sequence referenceOutput)
MaxLattice
MaxLatticeDefault.Factory. newMaxLattice(Transducer trans, Sequence inputSequence, Sequence outputSequence)
MaxLattice
MaxLatticeFactory. newMaxLattice(Transducer trans, Sequence inputSequence)
abstract MaxLattice
MaxLatticeFactory. newMaxLattice(Transducer trans, Sequence inputSequence, Sequence outputSequence)
SumLattice
SumLatticeBeam.Factory. newSumLattice(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
SumLattice
SumLatticeDefault.Factory. newSumLattice(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
SumLattice
SumLatticeFactory. newSumLattice(Transducer trans, Sequence input)
SumLattice
SumLatticeFactory. newSumLattice(Transducer trans, Sequence input, Transducer.Incrementor incrementor)
SumLattice
SumLatticeFactory. newSumLattice(Transducer trans, Sequence input, Sequence output)
SumLattice
SumLatticeFactory. newSumLattice(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor)
SumLattice
SumLatticeFactory. newSumLattice(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis)
abstract SumLattice
SumLatticeFactory. newSumLattice(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
Returns a SumLattice object to run forward-backward.SumLattice
SumLatticeFactory. newSumLattice(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, LabelAlphabet outputAlphabet)
SumLattice
SumLatticeScaling.Factory. newSumLattice(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
int
MultiSegmentationEvaluator. numIncorrectSegments(Sequence trueOutput, Sequence predOutput)
Returns the number of incorrect segments inpredOutput
void
Segment. setPredicted(Sequence predicted)
double
MaxLatticeDefault. tokenAccuracy(Sequence referenceOutput, java.io.PrintWriter out)
Sequence
Transducer. transduce(Sequence input)
Converts the given sequence into another sequence according to this transducer.Transducer.TransitionIterator
CRF.State. transitionIterator(Sequence inputSequence, int inputPosition, Sequence outputSequence, int outputPosition)
Transducer.TransitionIterator
FeatureTransducer.State. transitionIterator(Sequence inputSequence, int inputPosition)
Transducer.TransitionIterator
FeatureTransducer.State. transitionIterator(Sequence input, int inputPosition, Sequence output, int outputPosition)
Transducer.TransitionIterator
HMM.State. transitionIterator(Sequence inputSequence, int inputPosition, Sequence outputSequence, int outputPosition)
Transducer.TransitionIterator
MEMM.State. transitionIterator(Sequence inputSequence, int inputPosition, Sequence outputSequence, int outputPosition)
Transducer.TransitionIterator
Transducer.State. transitionIterator(Sequence input, int inputPosition)
abstract Transducer.TransitionIterator
Transducer.State. transitionIterator(Sequence input, int inputPosition, Sequence output, int outputPosition)
Method parameters in cc.mallet.fst with type arguments of type Sequence Modifier and Type Method Description void
MultiSegmentationEvaluator. batchTest(InstanceList data, java.util.List<Sequence> predictedSequences, java.lang.String description, java.io.PrintStream viterbiOutputStream)
Tests segmentation using an ArrayList of predicted Sequences instead of aTransducer
.Constructors in cc.mallet.fst with parameters of type Sequence Constructor Description MaxLatticeDefault(Transducer t, Sequence inputSequence)
MaxLatticeDefault(Transducer t, Sequence inputSequence, Sequence outputSequence)
MaxLatticeDefault(Transducer t, Sequence inputSequence, Sequence outputSequence, int maxCaches)
Initiate Viterbi decoding of the inputSequence, contrained to match non-null parts of the outputSequence.Segment(Sequence input, Sequence pred, Sequence truth, int start, int end, java.lang.Object startTag, java.lang.Object inTag)
Initializes the segment.SumLatticeBeam(Transducer t, Sequence input, Sequence output, Transducer.Incrementor incrementor)
SumLatticeBeam(Transducer t, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis)
SumLatticeBeam(Transducer t, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
SumLatticeBeam(Transducer t, Sequence input, Sequence output, Transducer.Incrementor incrementor, LabelAlphabet outputAlphabet, int[] constraints)
Create a lattice that constrains its transitions such that thepairs in "constraints" are adhered to. SumLatticeConstrained(Transducer t, Sequence input, Sequence output, Segment requiredSegment, Sequence constrainedSequence)
SumLatticeConstrained(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, LabelAlphabet outputAlphabet, int[] constraints)
Create a lattice that constrains its transitions such that thepairs in "constraints" are adhered to. SumLatticeDefault(Transducer trans, Sequence input)
SumLatticeDefault(Transducer trans, Sequence input, boolean saveXis)
SumLatticeDefault(Transducer trans, Sequence input, Transducer.Incrementor incrementor)
SumLatticeDefault(Transducer trans, Sequence input, Sequence output)
SumLatticeDefault(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor)
SumLatticeDefault(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis)
SumLatticeDefault(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
SumLatticeDefault(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, LabelAlphabet outputAlphabet)
SumLatticeScaling(Transducer trans, Sequence input)
SumLatticeScaling(Transducer trans, Sequence input, boolean saveXis)
SumLatticeScaling(Transducer trans, Sequence input, Transducer.Incrementor incrementor)
SumLatticeScaling(Transducer trans, Sequence input, Sequence output)
SumLatticeScaling(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor)
SumLatticeScaling(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis)
SumLatticeScaling(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
SumLatticeScaling(Transducer trans, Sequence input, Sequence output, Transducer.Incrementor incrementor, LabelAlphabet outputAlphabet)
-
Uses of Sequence in cc.mallet.fst.confidence
Constructors in cc.mallet.fst.confidence with parameters of type Sequence Constructor Description EntityConfidence(double conf, boolean corr, Sequence input, int start, int end)
InstanceWithConfidence(Instance inst, double c, Sequence predicted)
-
Uses of Sequence in cc.mallet.fst.semi_supervised.pr
Methods in cc.mallet.fst.semi_supervised.pr that return Sequence Modifier and Type Method Description Sequence
SumLatticeDefaultCachedDot. getInput()
Sequence
SumLatticeKL. getInput()
Sequence
SumLatticePR. getInput()
Methods in cc.mallet.fst.semi_supervised.pr with parameters of type Sequence Modifier and Type Method Description double
PRAuxiliaryModel. getWeight(int index, int position, Sequence input, Transducer.TransitionIterator iter)
void
PRAuxiliaryModel. incrementTransition(int index, int position, Sequence input, Transducer.TransitionIterator iter, double prob)
void
PRAuxiliaryModel. preProcess(int index, int position, Sequence input)
Constructors in cc.mallet.fst.semi_supervised.pr with parameters of type Sequence Constructor Description CachedDotTransitionIterator(CRF.State source, Sequence inputSeq, int inputPosition, java.lang.String output, double[] dots)
SumLatticeDefaultCachedDot(Transducer trans, Sequence input, Sequence output, double[][][] cachedDots, Transducer.Incrementor incrementor, boolean saveXis, LabelAlphabet outputAlphabet)
SumLatticeKL(Transducer trans, Sequence input, double[] initProbs, double[] finalProbs, double[][][] xis, double[][][] cachedDots, Transducer.Incrementor incrementor)
SumLatticePR(Transducer trans, int index, Sequence input, Sequence output, PRAuxiliaryModel auxModel, double[][][] cachedDots, boolean incrementConstraints, Transducer.Incrementor incrementor, LabelAlphabet outputAlphabet, boolean saveXis)
-
Uses of Sequence in cc.mallet.fst.semi_supervised.tui
Methods in cc.mallet.fst.semi_supervised.tui that return Sequence Modifier and Type Method Description static Sequence[]
SimpleTaggerWithConstraints. apply(Transducer model, Sequence input, int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences.Methods in cc.mallet.fst.semi_supervised.tui with parameters of type Sequence Modifier and Type Method Description static Sequence[]
SimpleTaggerWithConstraints. apply(Transducer model, Sequence input, int k)
Apply a transducer to an input sequence to produce the k highest-scoring output sequences. -
Uses of Sequence in cc.mallet.pipe.iterator
Constructors in cc.mallet.pipe.iterator with parameters of type Sequence Constructor Description SegmentIterator(Instance instance, java.lang.Object[] startTags, java.lang.Object[] inTags, Sequence prediction)
Iterate over segments in one instance.SegmentIterator(Sequence input, Sequence predicted, Sequence truth, java.lang.Object[] startTags, java.lang.Object[] inTags)
Iterate over segments in one labeled sequence -
Uses of Sequence in cc.mallet.types
Classes in cc.mallet.types that implement Sequence Modifier and Type Class Description class
ArrayListSequence<E>
class
ArraySequence<E>
class
FeatureSequence
An implementation ofSequence
that ensures that every Object in the sequence has the same class.class
FeatureSequenceWithBigrams
A FeatureSequence with a parallel record of bigrams, kept in a separate dictionaryclass
FeatureVectorSequence
class
LabelSequence
class
LabelsSequence
A simpleSequence
implementation where all of the elements must be Labels.class
StringEditFeatureVectorSequence
class
TokenSequence
A representation of a piece of text, usually a single word, to which we can attach properties.Fields in cc.mallet.types declared as Sequence Modifier and Type Field Description protected Sequence<I>
SequencePair. input
protected Sequence<O>
SequencePair. output
Methods in cc.mallet.types that return Sequence Modifier and Type Method Description Sequence<I>
SequencePair. input()
Sequence<O>
SequencePair. output()
Constructors in cc.mallet.types with parameters of type Sequence Constructor Description ArraySequence(Sequence<E> s, boolean copy)
SequencePair(Sequence<I> input, Sequence<O> output)
SequencePairAlignment(Sequence<I> input, Sequence<O> output, double weight)
-
Uses of Sequence in cc.mallet.util
Methods in cc.mallet.util with parameters of type Sequence Modifier and Type Method Description static double
Sequences. elementwiseAccuracy(Sequence truth, Sequence predicted)
-