Uses of Class
cc.mallet.fst.CRF
-
Packages that use CRF Package Description cc.mallet.extract Unimplemented.cc.mallet.fst Transducers, including Conditional Random Fields (CRFs).cc.mallet.fst.semi_supervised cc.mallet.fst.semi_supervised.pr cc.mallet.fst.semi_supervised.tui -
-
Uses of CRF in cc.mallet.extract
Methods in cc.mallet.extract that return CRF Modifier and Type Method Description CRF
CRFExtractor. getCrf()
Constructors in cc.mallet.extract with parameters of type CRF Constructor Description CRFExtractor(CRF crf)
CRFExtractor(CRF crf, Pipe tokpipe)
CRFExtractor(CRF crf, Pipe tokpipe, TokenizationFilter filter)
CRFExtractor(CRF crf, Pipe tokpipe, TokenizationFilter filter, java.lang.String backgroundTag)
-
Uses of CRF in cc.mallet.fst
Subclasses of CRF in cc.mallet.fst Modifier and Type Class Description class
MEMM
A Maximum Entropy Markov Model.Fields in cc.mallet.fst declared as CRF Modifier and Type Field Description protected CRF
CRFCacheStaleIndicator. crf
protected CRF
CRFOptimizableByBatchLabelLikelihood. crf
protected CRF
CRFOptimizableByLabelLikelihood. crf
protected CRF
CRFTrainerByStochasticGradient. crf
Methods in cc.mallet.fst that return CRF Modifier and Type Method Description CRF
CRFTrainerByLabelLikelihood. getCRF()
CRF
CRFTrainerByThreadedLabelLikelihood. getCRF()
CRF
CRFTrainerByValueGradients. getCRF()
static CRF
SimpleTagger. train(InstanceList training, InstanceList testing, TransducerEvaluator eval, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected, int iterations, double var, CRF crf)
Create and train a CRF model from the given training data, optionally testing it on the given test data.Methods in cc.mallet.fst with parameters of type CRF Modifier and Type Method Description Optimizable.ByCombiningBatchGradient
CRFOptimizableByBatchLabelLikelihood.Factory. newCRFOptimizable(CRF crf, InstanceList trainingData, int numBatches)
Optimizable.ByGradientValue
CRFOptimizableByLabelLikelihood.Factory. newCRFOptimizable(CRF crf, InstanceList trainingData)
protected CRF.State
CRF. newState(java.lang.String name, int index, double initialWeight, double finalWeight, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
protected CRF.State
MEMM. newState(java.lang.String name, int index, double initialWeight, double finalWeight, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
static CRF
SimpleTagger. train(InstanceList training, InstanceList testing, TransducerEvaluator eval, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected, int iterations, double var, CRF crf)
Create and train a CRF model from the given training data, optionally testing it on the given test data.Constructors in cc.mallet.fst with parameters of type CRF Constructor Description CRF(CRF other)
Create a CRF whose states and weights are a copy of those from another CRF.CRFCacheStaleIndicator(CRF crf)
CRFOptimizableByBatchLabelLikelihood(CRF crf, InstanceList ilist, int numBatches)
CRFOptimizableByGradientValues(CRF crf, Optimizable.ByGradientValue[] opts)
CRFOptimizableByLabelLikelihood(CRF crf, InstanceList ilist)
CRFTrainerByL1LabelLikelihood(CRF crf)
CRFTrainerByL1LabelLikelihood(CRF crf, double l1Weight)
Constructor for CRF trainer.CRFTrainerByLabelLikelihood(CRF crf)
CRFTrainerByStochasticGradient(CRF crf, double learningRate)
CRFTrainerByStochasticGradient(CRF crf, InstanceList trainingSample)
CRFTrainerByThreadedLabelLikelihood(CRF crf, int numThreads)
CRFTrainerByValueGradients(CRF crf, Optimizable.ByGradientValue[] optimizableByValueGradientObjects)
Factors(CRF crf)
Construct a new Factors with the same structure as the parameters of 'crf', but with values initialized to zero.MEMM(CRF crf)
OptimizableCRF(CRF crf, InstanceList ilist)
State(java.lang.String name, int index, double initialWeight, double finalWeight, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
State(java.lang.String name, int index, double initialCost, double finalCost, java.lang.String[] destinationNames, java.lang.String[] labelNames, java.lang.String[][] weightNames, CRF crf)
TransitionIterator(CRF.State source, FeatureVector fv, java.lang.String output, CRF crf)
TransitionIterator(CRF.State source, FeatureVectorSequence inputSeq, int inputPosition, java.lang.String output, CRF crf)
TransitionIterator(MEMM.State source, FeatureVector fv, java.lang.String output, CRF memm)
TransitionIterator(MEMM.State source, FeatureVectorSequence inputSeq, int inputPosition, java.lang.String output, CRF memm)
-
Uses of CRF in cc.mallet.fst.semi_supervised
Fields in cc.mallet.fst.semi_supervised declared as CRF Modifier and Type Field Description protected CRF
CRFOptimizableByEntropyRegularization. crf
Methods in cc.mallet.fst.semi_supervised with parameters of type CRF Modifier and Type Method Description void
CRFOptimizableByGE. createReverseTransitionMatrices(CRF crf)
Initializes data structures for mapping between a destination state and its source states / transition indices.Constructors in cc.mallet.fst.semi_supervised with parameters of type CRF Constructor Description CRFOptimizableByEntropyRegularization(CRF crf, InstanceList ilist)
Initializes the structures (sets the scaling factor to 1.0).CRFOptimizableByEntropyRegularization(CRF crf, InstanceList ilist, double scalingFactor)
Initializes the structures.CRFOptimizableByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, InstanceList data, StateLabelMap map, int numThreads)
CRFOptimizableByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, InstanceList data, StateLabelMap map, int numThreads, double weight)
CRFTrainerByEntropyRegularization(CRF crf)
CRFTrainerByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints)
CRFTrainerByGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, int numThreads)
CRFTrainerByLikelihoodAndGE(CRF crf, java.util.ArrayList<GEConstraint> constraints, StateLabelMap map)
-
Uses of CRF in cc.mallet.fst.semi_supervised.pr
Fields in cc.mallet.fst.semi_supervised.pr declared as CRF Modifier and Type Field Description protected CRF
ConstraintsOptimizableByPR. crf
protected CRF
CRFOptimizableByKL. crf
Methods in cc.mallet.fst.semi_supervised.pr that return CRF Modifier and Type Method Description CRF
PRAuxiliaryModel. getBaseModel()
Constructors in cc.mallet.fst.semi_supervised.pr with parameters of type CRF Constructor Description ConstraintsOptimizableByPR(CRF crf, InstanceList ilist, PRAuxiliaryModel model)
ConstraintsOptimizableByPR(CRF crf, InstanceList ilist, PRAuxiliaryModel model, int numThreads)
CRFOptimizableByKL(CRF crf, InstanceList trainingSet, PRAuxiliaryModel auxModel, double[][][][] cachedDots, int numThreads, double weight)
CRFTrainerByPR(CRF crf, java.util.ArrayList<PRConstraint> constraints)
CRFTrainerByPR(CRF crf, java.util.ArrayList<PRConstraint> constraints, int numThreads)
PRAuxiliaryModel(CRF baseModel, java.util.ArrayList<PRConstraint> constraints)
-
Uses of CRF in cc.mallet.fst.semi_supervised.tui
Methods in cc.mallet.fst.semi_supervised.tui that return CRF Modifier and Type Method Description static CRF
SimpleTaggerWithConstraints. getCRF(InstanceList training, int[] orders, java.lang.String defaultLabel, java.lang.String forbidden, java.lang.String allowed, boolean connected)
static CRF
SimpleTaggerWithConstraints. trainGE(InstanceList training, InstanceList testing, java.util.ArrayList<GEConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var, int resets)
Create and train a CRF model from the given training data, optionally testing it on the given test data.static CRF
SimpleTaggerWithConstraints. trainPR(InstanceList training, InstanceList testing, java.util.ArrayList<PRConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var)
Create and train a CRF model from the given training data, optionally testing it on the given test data.Methods in cc.mallet.fst.semi_supervised.tui with parameters of type CRF Modifier and Type Method Description static CRF
SimpleTaggerWithConstraints. trainGE(InstanceList training, InstanceList testing, java.util.ArrayList<GEConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var, int resets)
Create and train a CRF model from the given training data, optionally testing it on the given test data.static CRF
SimpleTaggerWithConstraints. trainPR(InstanceList training, InstanceList testing, java.util.ArrayList<PRConstraint> constraints, CRF crf, TransducerEvaluator eval, int iterations, double var)
Create and train a CRF model from the given training data, optionally testing it on the given test data.
-